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Abstract-Based on Reissner's theory for the bending of thin plates and by replacing the cracks by dislocation
arrays, the flexure problem for an unbounded plate, containing two arbitrarily situated rectilinear cracks, is
reduced to a system of singular integral equations relative to six functions which characterize the density of
dislocations.

The solution, in the form of the product of the series of Chebyshev polynomials of the first kind and their
weight function, is obtained for the cases of plain bending and uniform twisting along an arbitrarily inclined
direction to the cracks.

Numerical results are shown for two fundamental cases of crack configuration, i.e. a pair of equal colinear
cracks and equal parallel cracks without stagger.

I. INTRODUCTION
One of the most basic requirements in the fracture mechanics is the knowledge of the singular
character of the stress field near the crack tip and many investigations have been made for the crack
problems of longitudinal shear, plane strain and plane stress and classical plate bending.

As has already been pointed out [1-4], the classical theory for flexure of plates fails to provide
an accurate estimate of the stresses in the neighborhood of the crack, since the classical theory can
not satisfy all of the three physically natural boundary conditions along a free edge. This
discrepancy, however, can be overcome by using Reissner's theory [5] in which all three boundary
conditions on the rim of the plate can be satisfied.

In a previous paper [6], the center of dislocations in a thin plate under flexure has been defined
and its expression has been obtained in the framework of Reissner's theory. By replacing the crack
by continuous arrays of dislocation, a system of singular integral equations for the dislocation
densities can readily be set up. By employing this technique, the plain bending problem of a thin
semi-infinite plate weakened by a transverse crack has been discussed [7].

The present paper continues the previous sequence of investigations and deals with the elastic
interaction of two arbitrarily situated rectilinear cracks in an infinite plate under plain bending or
uniform twisting along an arbitrarily inclined direction to the cracks. By the same approach, the
problem is reduced to a set of singular integral equations relative to six unknown functions which
characterize the density of dislocations on the crack lines. By the use of the method developed by
Erdogan [8], one can obtain the solution of the set of integral equations, in which the essential
feature of the singularity of the unknown functions is preserved and the stress intensity factors can
easily be estimated. Numerical results are given for two fundamental cases of crack configuration,
i,e. a pair of equal colinear cracks and equal parallel cracks without stagger.

2. BASIC EQUATIONS
Consider an isotropic and homogeneous plate of constant thickness h and take its middle plane,

before bending occurs, as the x, y plane and denote the thickness coordinate by Z. In the
framework of Reissner's theory, the weighted deflection w(x, y) of the plate free from lateral loads
should be a plane biharmonic function and can be expressed as

Dw(x, y) = [i!(z) +z/(z) +g(z) +g(z)]/2, (I)

where z =x + iy and i =x - iy. Two complex deflection functions /(z) and g(z) are holomorphic
in the region occupied by the plate and D = Eh 3/12(l- lJ2) is the flexural rigidity of the plate with
Young's modulus E and Poisson's ratio lJ. The average rotations f3% and {3, about y- and x-axes
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respectively are given by

OSAMC TAMAH:

- - - ar/J
D({3. + i{3,) = -[f(Z)+Z/,(Z)+2(K + l)e 2/"(z)+h(z)]-i(K + 1)<1i' (2)

where h(z) = g'(z), K = (3 + v)/(I - v) and e = h IvOO). The stress function ljJ(z, i) is the solution
of Helmholtz equation

(3)

The bending moments M., My, twisting moment Hxy and shearing forces V., Vy, all per unit
length, can be expressed in terms of f(z), h(z) and ljJ(z, i) as follows:

4(K -I) -
Mx + My = ---1- [f'(z) + /'(z)],

K+

Mx - My - i2Hxv = - ~I [h'(z) + i/,,(z) +2(K + 1)E2f"'(z)] + i8E2aa2t, (4)
, K+ z

Vx - iV, = - 4/,,(z) + i2 aaljJ., z

Thus the problem is reduced to the construction of the complex deflection functions f(z), h(z) and
the stress function ljJ(z, i) which satisfy all of the boundary conditions of the problem.

Moreover the formulas of transformation of stress resultants due to the rotation of coordinate
axes Zl = e'·i/3z are given by

2(My,+ iH",,) = Mx + My - ei2fJ (Mx - My - i2Hxy ),

Vx,- iVy! = eifJ(Vx - iVy).

(5)

3. CONTINUOUS DISLOCATION ARRAYS
Consider now the case where three kinds of dislocations lie continuously on the line segmentL,

occupying the interval - a < x < a on the real axis, in an infinite plate, see Fig. I. Denoting the
intensity of dislocations of {3y, {3x and w on the line element ds at the point P(x = s, y =0) on L by
4>1(S )ds, 4>3(S )ds and E4>s(S )ds respectively, we have the following set of functions expressing the
continuous arrays of dislocations [6]

h'(z)= KD fa 4>.(s)+i4>3(S)ds+ D fa s[4>I(s)-i4>3(S)]ds
c 2(K + 1)7T -a S-z 2(K + 1)7T -a (s -Z)2

.ED!" 4>.(5) d
-~ --2 S,

27T a (5-Z)
(6)

where '2ei·2 = z - s. K n (z) are modified Bessel functions of the second kind. Substituting the above
into eqn (4), we obtain the corresponding stress resultants as
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'I

ds
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Fig. 1. Dislocation array in an elastic plate.

M -M -'2H =2(K-l)D{( --)fa cP.(s)ds K+lfa -I..()
x y 1 xy ( + 1)2 Z Z (_)2 + _ 1 '1'. S

K 7T -a S Z K -a

[ It - s 8E
2

I K ('2) 138 1 K ('2) i8]dX --+-------,+- 3 - e- 2 __ ,- e- 2 S
Z - S (Z - sf (Z - s) E E E E
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'2fa cP3(s)ds.( -)fa cP3(s)ds-I ----I Z-Z ---2
-a S-Z -a (S-Z)

.K + 1 fa -I.. ( )d [1 t - s + 8E
2

1 K ('2) -139 1 K ('2) -i9]+1-- '1'3 s S ------2 ---3-- 3 - e 2 __ 1- e 2
K - 1 -a Z - S (Z - S) (Z - S) E E E E

'~fa -I.. ( )[~-!K (!2) -i282]d}+ 1 1 'l'S S ( )2 2 e S ,K - -a Z - SEE
(7)

The condition of single-valuedness of deflection and rotations due to the dislocation arrays on L
can be expressed as [6]

L: cPi(S) ds =0 (j = 1,3), L: [ScP3(S) +EcPs(S)] ds = O. (8)

4. PLAIN BENDING OF AN INFINITE PLATE CONTAINING TWO CRACKS
Let an unbounded plate of constant thickness h be weakened by two cracks Land LI, the

length of which is 2a and 2al respectively. The origin of Cartesian coordinates (x, y) is located at
the center 0 of the crack L and the x axis coincides with the crack line. The center 0 1 of the crack
L 1 is given by the coordinates Zo = Xo + iyo = ,e ia and the crack L1 forms the angle f3 with the x
axis, see Fig. 2. We also use local system of coordinates (Xl, YI) in which the origin lies at O. and the
XI axis runs along the crack line L,. The relation between these two coordinates is given by

(9)

Provided that the load transmitted through the plate is the constant bending moment Mo in the
direction, making an angle 'Y with the X axis, and the rims of the cracks are free from traction, the
boundary conditions of the problem are written as follows:

(a) At infinity Izl~oo,

(b) On the rim of the crack L, y = 0, Ixl < a,

My + iH,y = 0, Vy = o.

(10)

(11)
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y
I

Fig. 2. Configuration and coordinate systems.

(c) On the rim of the crack L), YI = 0, Ixd < ai,

My, + iHx,Yi = 0, VYi = o. (12)

In order to construct the set of three functions f'(z), h'(Z) and "'(z, z) which satisfy all the
boundary conditions (10), (II) and (12), we first consider the following functions

f '()- K+IMoh'()_ ( I)Mo i2,.I.( -)-0b Z - - K _ 18' b Z - - K + 8 e ,'I'b Z, Z - , (13)

which express the state of plain bending of the crack-less plate and the corresponding stress
resultants relative to the coordinates (x, y) are given by eqn (10). Hence, by eqn (5) we have the x 1-,

YI-components of stress resultants as

Thus the set of functions in eqn (13) does not satisfy the boundary conditions on the crack rims. For
the accommodation of these conditions, we now consider the continuous arrays of dislocations on
the crack lines Land L I • If we denote the intensity of dislocations of f3y, f3x and w on the line
element ds at the point P(z = s) on L by cf>,(s) ds, cf>3(S) ds and Ecf>sCs) ds respectively and the
intensity of corresponding dislocations on the line element dS I at the point P,(ZI = Sl) on L I by
cf>2(sl)ds(, cf>4(s,)ds l and Ecf>6(SI)ds l respectively, the set of functions expressing the dislocation
arrays on L is given by eqn (6) while the functions f~,(z I), h ~,(z I) and "'e,(z I, il)' which correspond
to the dislocation arrays on the crack line L I, are given by those in eqn (6), in which a, s, Z, '2, 82, cf>l'
cf>3 and cf>s are replaced by a), s I, Z), '3, 8), cf>2, cf>4 and cf>6 respectively. Here '3 and 83are defined by

(15)

As the stress resultants derived from these sets of functions tend to zero when Iz 1-+ 00, the
superposition of these functions to those in eqn (13) does not disturb the boundary condition (10) at
infinity.

The x -, y-components of the stress resultants corresponding to the set of functions (6) are given
by eqn (7) and the XI-, Yl-components are obtained by the transformation formulas (5). Similarly,
the XI-, y,-components of the stress resultants due to the set of functions f~,(Z,), h~t(zl) and
"'c,(z(, il) can be written in the same form as those in eqn (7) and hence the x·, y-components are
readily obtained by using the formulas (5).

By taking account of these and after some manipulations, from boundary conditions (II) and
(12) we have
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I {fa cP (s) 1 fa fa;a s ~ X ds +;- acP3(S) In Ix - s Ids +a [fsb, s )cPls) + fss(x, s )cP5(S)] ds

+ ~,fa', fS(2nl(X, SI)cP2n(SI) dS,} =0, (Ixl < a)
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(16)

(17)

(18)

(K + 1)2Mo [I _ e i2(Y-IlI] +..!.. {J a, cPb,) + icP4(S,) ds , +Ja, fdx I, SI)cP2(SI) ds ,
4(K -1)D 1T -", S, - Xl -a,

+ i 5-:', [f44(X" S,)cP4(SI) + !46(X, , S,)cP6(S,)] ds,

+~I r: [/l(2n-\)(X" S) + if4{2n- \)(X" S)]cP2n _,(S) dS} =0, (lx,1 < a,)

I {f a, cP6(S I) ds , +.!. fa, cP4(S ,) In Ix1- sd ds, + J_aa', [f64(XI, sdcPb,) +166(X" SI)cP6(S,)] ds ,
1T -aJ S'-X I E -a,

+~,fa f6<2n-\)(X"S)cP2n-,(S)dS}=0,(!x,l<a,) (19)

where the first integrals are understood to be the Cauchy principal value and

K + 1 2 -
f,,(x, s) =--1-- KM),

K - x-s
1(+12[- ~-]f 33(x,s)=--I-- KM)+-2 KM ) ,
K - x-s

K+II[- IJhs(x, s) = --- KM) -- ,
K - 12E 2 (20)

15b, s) = - [K2«) +Ko«)]/E, Iss(x, s):: - sgn (x - s)KM)!E,

I K (P3) -0, I K (P3) -I,] -i21l-- 3 - e ,-- ,- e 'e ,
E E E E

I ( ) 'f ( ) - i(K + I) -i2(, +Ill [ 2E I K (P3)]
16 X,S, +136 X,SI -2(K-O e ' -p/+;- 2 E '

f ( ) 'f ( ) '-i<2"1l1[2E lK(P3)] ,I K(I!2) III52 x, Sl + I 54 X, S, :: Ie' p/ - -; 2 -; - I; 0 E e,

Here the following notations are used

(21)
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t = Ix - 51/€, KoW = KoW + In (2) + Yo,

p, eix, = e-i(3 (x - rein - S I e i(3).

(22)

(23)

where Yo is Euler's constant. The expressions for f22(X" 5,), f44(X" 51), f4{,(X" 5.), 164(X I , 51) and
16(,(x I, 5I) are given by those for III, fll, f,~, I~J and f~~ in eqn (20) respectively, in which x and 5 are
replaced by x Iand 5I. Furthermore, the expressions for f21 + if4l' f2J + i/4h f2~ + if4~' f61 + i/63 and 1M
are given by those for fl2 + if32, fl4 + if,4, fl6 + if36, 1~2 + if~4 and f~6 in eqn (21) respectively, in which
x, S" P" X3 and f3 are replaced by x1,5, P2, X2 and - f3 respectively, P2 and X2 being defined by

P2 e ix, =ei(3 (x, + r eila -Ill - 5 e i(3).

Now the following substitutions may be made:

fla = c, ria = R, P21a == R2, Pl/a = RJ,

( 1/>2n-I(5») = _ (K + 1)2Mo (<1>2n-I(S»), (n == 1,2,3)
1/>2n(5,) 2(K - I)D <1>2n(S)

hi; = (0~i03dc) + (06i041L!C), (i, j = 1,2,3, ... ,6)

G(1- cos 2y), ~ [I - cos 2(y - (3)], ~ sin 2y, ~ sin 2(y - (3), 0, 0) == [C" C2, C3 , C4 , C~, C6 ],

(24)

(25)

(26)

(27)

where Oil is the Kronecker delta. Moreover, F;;(X, S) (i, j = 1,2,3, ... ,6) which are not defined in
eqn (27) are to be zero. By these substitutions, eqns (16) to (19) are changed into

1-f I <1>j(S) dS+1-±[f I F;;(X, S)<1>I(S) dS
1T I S-X 1T I~I -I

+ hilL<1>1(S) In IX - SIdS] =c, (IXI < I, i = I, 2, 3, ... ,6) (28)

where the Cauchy principal value is taken for the first integral.
By observing the behavior of modified Bessel function of the second kind for small argument,

the functions F;I(X, S) are proved to be bounded in the closed interval- I ~ X, S ~ I and thus the
six equations in eqn (28) are a system of singular integral equations with Cauchy type kernels.

By the same substitution, the conditions of single-valuedness of deflection and rotations due to
the dislocation arrays on Land L" i.e. eqn (8) and its equivalents, are transformed into

r <1>1(S) dS =0, (j = 1,2.3.4)r [S<1>,(S) + c<1>~(S)] dS =0,r [S<1>.(S) + (c /L )<1>6(S)] dS

=O. (29)

These are the additional conditions which fix the unknown functions <1>1 (S) (j = 1,2, 3, ... ,6). Thus
the problem is reduced to the solution of the set of singular integral eqns (28) under the additional
conditions (29), which has already been discussed by Erdogan [8].

Following his technique, we assume the unknown dislocation densities in the form
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~

cl>j (S) =L a/.Tn (S)!v(l- S2), (j =1,2,3, ... ,6)
n £0

293

(30)

where ajn are unknown constants and Tn (S) are Chebyshev polynomials of the first kind.
Substituting the above into eqn (29) and integrating, we have

ajO = O(j = 1,2,3,4), a31 +2caso = 0, a41 +2(c/L )a6IJ = O. (31)

Substituting eqn (30) into eqn (28) and considering the orthogonality relations of Chebyshev
polynomials [9] and eqn (31), we finally get the following set of linear equations for the unknown
constants

6 ~

L L [OijOkn +dijkn]bj. = COlk, (i = 1,2, ... ,6;k = 1,2, .....)
j=1 "=1

where

(32)

and

The coefficients Ci;kn are given by

(34)

where Un (X) are Chebyshev polynomials of the second kind. The integrals in eqn (35) are of
Gauss-Chebyshev type and may easily be evaluated by employing proper quadrature
formulas [10].

5. BEHAVIOR OF STRESS RESULTANTS NEAR CRACK TIPS
We will proceed to the study of the asymptotic behavior of stress resultants in the vicinity of the

vertices of cracks.
It is evident that the set of functions f~(z), h~(z) and l/Ic (z, i) in eqn (6) takes the leading role in

the singular character of the stress resultants near the crack L, while in the neighborhood of
Ld~,(Z,), h ~,(ZI) and l/Ic,(z" i l ) make an important contribution. Consequently, by the same
procedure as that in the case of a single crack in an infinite plate[6J, we can easily obtain the
asymptotic behavior of stress resultants near the crack tips. Especially the moment intensity factor
of opening mode km.. of sliding mode km2 and the shearing force intensity factor k" at the ends
A(z = a) and B(z = - a) of the crack L are given by

( kml(A)) _ M' /( ) ~ (+ 1)·+lb (km2(A)) - M' /( ) ~ (+ I)n+lbkm1(B) - oy a ~I - In, km2(B) - oy a ~1 - 3n,

(36)

The corresponding quantities at the ends A,(zl = al) and BI(zl = - at) of the crack L I can be
obtained by the above expressions in which A, B, a, bin, b3n and bsn are replaced by A .. B .. a.. b2n,

b4 • and b6 • respectively.

6. NUMERICAL RESULTS
Following the aforementioned analysis, some numerical calculations are performed for two

fundamental cases of crack geometry, i.e.
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(a) a pair of equal colinear cracks,
(b) two equal parallel cracks without stagger.

6.1 The case of a pair of colinear cracks
In this particular case, we have a = 0 in eqn (9). Provided f3 = 1T in the same equation, from

eqns (23), (24) and (25) we get

(37)

Hence in eqn (27) we have

(38)

For the elements of the coefficient matrix [dijk /1] in eqn (34) we obtain

(39)

Moreover the following elements are originally zero

Therefore the system of linear eqns (32) are divided into two parts as

~ ,

L L (8ij8k/l +diik /1)Bj/l = 81k , (i = 1,2;k = 1,2, ..... )
i -1 n-I

6 ~

L L (8ij8k/l +dijk/l)Bj/l = 81d8Ji +8.d, (i = 3,4,5,6; k = 1,2, ..)
;=3":....: 1

where

(40)

(41 )

(42)

Bi" = bj/l/~(I-COS2"y),(j = 1,2),Bj /1 = bi/l/~sin2"y,(j = 3,4,5,6). (43)

In this case the moment- and shearing-foree-intensity factors in eqn (36) are rewritten as

The equivalents for the ends A 1 and B I of the crack L 1 are given by the above equation in which A.
B, a, B,", BJ/I and B~/I are changed into A" B I, a" B 2 /1' B./I and B 6 /1 respectively. It is evident that
in this crack geometry the effect of the load direction "y on the intensity factors is separated from
other factors such as configuration parameters a/r, E / a, a,/a and reduced Poisson's ratio K. If the
plain bending takes place along the crack line, i.e. "y = 0, we have km I = km2 = k,. = 0 and there
exists no singularity. If the constant bending moment Mo is transmitted in the direction
perpendicular to the crack line ("y = 1T /2), we get km 2 = k" =O.

If, further, two cracks are equal in length, i.e. a = a" we obtain

(45)

and the set of linear equations for these unknown coefficients is simplified as
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~

L (8kn +d llkn +d l2kn )B ln = 81k,
n-I

~

L [(8kn +dmn + d34kn)B3n + (dmn + d36kn)Bsn] = 81k, (k = 1,2, ..) (46)
n =1

~

L [(dmn + dl4kn)B3n + (8kn + dlSkn + dS6kn)Blnl = o.
n= I

In order to study the effect of the neighboring cracks, some numerical works are carried out for
the present case. Once the geometrical parameters E/a, aIr and Poisson's ratio II are specified, the
set of linear eqns (46) is solved by an approximate method in which only the first N equations
containing only the first N unknowns are taken. The computation reveals that the value of N
needed to achieve a particular level of accuracy is strongly dependent on EIa and this dependence
is quite similar as that in the case of aIr ~oc[61. An example is shown in Table I, which gives the
values of FIA against N for three values of E/a, aIr and II being 0·475 and 0 respectively.

Table I. Effect of N on moment intensity factor F'A (v = 0, air = 0,475)

Ela

1.0 0.3 C.l

2~ :.3667 1.187 1. : .2~99
4o :.3667 1.187 5 : .21CB

60 1.1876 :.2111

Figures 3and 4show the numerical results of F I and F2 against aIr for various values of EIa and
II. In these figures, the mark on the line of aIr = 0·5 means the reduced value of corresponding
intensity factor ratios for a single crack of length 4a in an unbounded plate of thickness h [6]. The
values of FI and F2 are plotted versus EIa in Fig. 5. Since the shearing force intensity factor ratio F3

remains in the range of comparatively small values, the variation of F3 due to aIrand EIa is not
shown here for brevity.

Inspection of these figures will reveal the following facts:
(a) With the approach of two cracks, the moment intensity factor ratios FI and F2 at the inside

tip A increase markedly.
(b) When aIr is not so large, FIA decreases monotonically with the decrease of Ela, while in the

case of aIr = 0·475 FIA attains its maximum at a certain value of EIa. It may be understood that the
effect of the adjacent crack on the moment intensity factor kl at the inner crack tip is much larger
when the thickness ratio E/a becomes comparatively small.

0.30.20.1 0.4 0.5
o/r

Fig. 4. Moment intensity factor ratio F, vs crack
length ratio aIr.

0.2 '--_---'__--I.__-<-__--l....__....

o030.201 0.4 0.5

air

Fig.3. Moment intensity factor ratio F, vs crack
length ratio aIr.

-- F2A

--- F2B I
ml 2 +-_ ..-

il:'

II 5 ...
--F,.

i
il:'1 0 --+

'" --- F'9 E/O . I 0
LL v1---._

0(

0.8
.. __.. _-

LL

I
1.0

E/a·I.O 0.6 '--r---,
E/O • 0.2 I

E/a ·0 I 0.4
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14..
Ll"
«

tl: I 2 1-'------+--

0.4 1----+H#1--

o 02 0.4 0.6 0.8 1.0
E/O

Fig. 5. Moment intensity factor ratios FI and F, vs plate thickness ratio EIa.

6.2. The case of two parallel cracks without stagger
In this case we have a = 1T /2 and it is convenient to put 13 = 1T. As expected by the symmetry of

the problem, it is easily proved that some of the elements of coefficient matrix [diikn ] vanish and by
putting

(
i = 1,2,5,6)
j =3,4

(47)

the set of linear equations can be divided into two groups. Further, the intensity factors at the crack
tips A and B can be expressed as

where

(~::~~D = ~ Moy(a) [(1- cos 2"Wtl ± sin 2"Ft2]'

(~::~~D = ~ Moy(a) [± (1- cos 2,,)F!1 +sin 2"F!2],

(kv(A)) -! Mo. /( ) [(1- 2 )F* + . 2 F* ]kv(B) -2 E V a COS" 31-sm" 32,

00 00 00 00

Ftl = L B1(2n-lh Ft2 = L B 1(2nh F!! = L B 3(2nh F!2 = L B 3(2n-lh
n=1 n=1 n=1 n=1

* --~~B F* --~~BF 31 - 2( _ 1) £oJ 5(2n-lh 32 - 2( _ 1) £oJ 5(2n)'
K n=1 K n=1

(48)

(49)

The corresponding quantities for the ends Al and B 1 of the other crack L 1 are given by the same
replacement as before. Thus the influence of the loading direction " on the intensity factors is
separated from other factors, so that if " = 1T /2, km ,(A), km2(A) and k.(A) are controlled only by
PfJ, F~I and Ptl respectively.
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In the more particular case of equal crack length, there also exist the relations in eqn (45) and the
sets of linear equations are simplified considerably. The first set which determines B1(2n-l), B3(2n)

and B~(2n -I) can be written as

x

L [{ c5kn +dl1C2k -1)(2n -1) +d12(2k -1)(2n -I)}B1(2n -I)
n-I

x

L [d32(2k)(2n-I)B 1(2n-l) +{c5kn + d))(2k)(2n) + d34<2k)(2n)}B 3(2n)
n-1 (k=I,2, ...)

+{d3~(2k)(2n-l) + d36<2k)(2n-I)}B s(2n .. 1)] = 0,
(50)

x

L [dS2(2k-I)(2n-I)B l(2n-1) +{d53(2k-I)(2n) + d54(2k-1)(2n)}B3(2n)
n-I

+{c5kn + d 55C2k - 1)(2n-1) + d~6(2k-I)(2n-I)}BS(2n-.I)] =o.

The remaining set of linear equations for B 1(2n), B 3(2n _ I) and B 5(2n) is given by the above equations in
which (2k -1), (2n - 1), 2k and 2n are replaced by 2k, 2n, (2k - I) and (2n - 1) respectively and the
constant terms on the right hand side (c5 lk, 0, 0) are changed into (0, c5 lk, 0). These systems of linear
equations may be solved by the approximate method mentioned previously.

Numerical results of Ffh Ff2 and F~2 are shown versus the crack length-space ratio aIr for
various values of EIa and II in Figs. 6and 7, while they are plotted against the plate thickness ratio
Ela in Fig. 8. The values of F~I F~I and F~2 remain so smal1 that the graphs for them are not shown
here.
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Examination of these figures will show the following:
(a) The stress relieving effect of the neighboring parallel crack is recognized in the variation of

Ff1 and Fh and this effect for Ff 1 is remarkable in the range a/r < 1.
(b) The values of FfJ and F~2 decrease monotonically with the decrease of Eta.

7. UNIFORM TWISTING PROBLEM

As to the case where the constant twisting moment Ho is transmitted through an unbounded
plate, weakened by two arbitrarily situated cracks Land LJ, in the direction forming an angle y
with the crack L, the analysis can be performed quite parallel with the previous case. Instead of the
set of three functions in eqn (13), we shall start with the following functions

[;(z) = 0, h;(z) = i(K +1)Hoe-i2y /4, ljJ,(z, z) = O. (51)

In order to satisfy the traction free conditions on the crack rims in eqns (11) and (12), we may as well
superimpose the continuous arrays of dislocations on two crack lines. Rewriting the unknown
dislocation density as

(52)

and assuming the expansion in eqn (30), we arrive at the set of linear eqns (32) for the unknown
coefficients bjn> in which constant terms in the right hand side are replaced by

By the use of coefficients bjn, thus determined, the intensity factors at the crack tips can be
obtained by eqn (36) and their equivalents, in which Mo is replaced by Ho• Consequently in the
particular cases of crack geometry, considered before, the intensity factors are given by eqns (44)
and (48) respectively in which [!Mo(1- cos 2yUMosin 2y] are replaced by [Hosin 2y, Ho cos 2y].
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